Hexagonal Boron Nitride is 10 Times Stronger Than Graphene
The U.S. and its allies plan to impose sanctions on more Russian industries and supply chains.
The US government representatives recently visited Europe to consult with allies on strengthening and enforcing sanctions to punish Russia. They also plan to take action to disrupt their critical supply chains.
The US government claims that the sanctions imposed on Russia since the invasion began on February 24 have proved extremely effective, plunging Russia into a financial crisis. The sanctions include a freeze on the Russian central bank's foreign exchange assets, a ban on hard currency transactions by major Russian banks and wealthy individuals, and export restrictions on advanced semiconductors and other technologies. The sanctions have weakened the Russian economy and left the Kremlin with fewer resources.
The volatile international political situations will continue to affect the markets and prices of many commodities like the boron nitride.
Hexagonal boron nitride (H-BN) is a two-dimensional layered broadband-gap insulating material with good heat resistance, chemical stability, and dielectric properties. It is widely used in electronic devices.
Hexagonal boron nitride is structurally similar to graphene, consisting of a planar lattice of atoms arranged in interconnected hexagons. The only difference is that in graphene, all atoms are carbon, whereas, in H-BN, each hexagon contains three nitrogen atoms and three boron atoms.

Carbon-carbon bonds are among the strongest, so graphene is theoretically much stronger than H-BN. The strength and elastic modulus of the two materials are similar, and h-BN is slightly lower in comparison: graphene has a strength of about 130GPa and young's modulus of about 1.0TPa; The strength and modulus of H-BN are 100GPa and 0.8 TPA, respectively.
Despite its excellent mechanical properties, graphene has low crack resistance, which means graphene is brittle.
In 1921, British engineer Griffiths published a theoretical study of fracture mechanics, describing the failure of brittle materials and the relationship between the size of cracks in materials and the force required to make them grow. For hundreds of years, scientists and engineers have used this theory to predict and define the toughness of materials.
In 2014, a study by Professor Jun Lou and his team at Rice University showed that graphene's fracture toughness is consistent with Griffith's theory of fracture mechanics: when the stress applied to graphene is greater than the force holding it together, the cracks propagate, And the energy difference is released during crack propagation.
H-bn is also thought to be vulnerable, given its structural similarity to graphene. However, this is not the case.
The scientists found that H-BN is 10 times more ductile than graphene.
A team led by Prof. Jun Lou of Rice University and Prof. Hua Jian Gao of Nanyang Technological University in Singapore has found that the brittle H-BN is 10 times stronger than graphene in cracking resistance. This finding runs counter to Griffith's fracture theory, and such anomalies have never been observed before in two-dimensional materials. The related research results were published in Nature with the title "Intrinsic Toughening and stable crack propagation in Hexagonal Boron nitride".
Mechanism Behind H-BN's Extraordinary Toughness
To find out why, the team applied stress to the H-BN sample, using scanning electron microscopes and transmission electron microscopes to see as much as possible how the cracks occurred. After more than 1,000 hours of experiments and subsequent theoretical analysis, they discovered the mystery.

Although graphene and H-Bn may be structurally similar, boron and nitrogen atoms are not the same, so there is an asymmetric arrangement of hexagonal lattice intrinsic in H-BN, unlike the carbon hexagon in graphene. That is, in graphene, the cracks tend to go straight through the symmetrical hexagonal structure from top to bottom, opening the bond like a zipper. The hexagonal structure of H-BN is slightly asymmetric due to the stress contrast between boron and nitrogen, and this inherent asymmetry of the lattice causes cracks to bifurcate, forming branches.
And if the crack bifurcates, that means it's rotating. The existence of this steering crack requires additional energy to further promote the crack propagation, which makes the crack more difficult to propagate and effectively enhances the toughness of the material. That's why H-Bn shows more elasticity than graphene.
Due to its excellent heat resistance, chemical stability, and dielectric properties, H-BN has become an extremely important material for two-dimensional electronic and other 2-bit devices, not only as a support base but also as an insulating layer between electronic components. Today, h-BN's toughness makes it an ideal choice for flexible electronics and is important for the development of flexible 2D materials for applications such as two-dimensional electronics.
In the future, as well as being used in flexible electronic textiles, h-BN could also be used as flexible electronic skin and implantable electronics that can be connected directly to the brain.
Boron Nitride BN Powder Price
The price is influenced by many factors including the supply and demand in the market, industry trends, economic activity, market sentiment, and unexpected events.
If you are looking for the latest BN powder price, you can send us your inquiry for a quote. ([email protected])
Boron Nitride BN Powder Supplier
Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and nanomaterials including silicon powder, nitride powder, graphite powder, zinc sulfide, calcium nitride, 3D printing powder, etc.
If you are looking for high-quality BN powder, please feel free to contact us and send an inquiry. ([email protected])
Southern Copper Corp (SCCO.N) recently said its Peruvian mine remained closed after a six-week standoff with protesters and blamed the Peruvian government for failing to intervene in the safety of its 1,300 workers and their families.
The company said in a statement that a recent agreement to end protests at the Cuajone mine required the company to withdraw complaints against protest leaders because railways transporting minerals and supplies remained blocked. Production has been suspended since the end of February.
Peru's Energy Ministry said in a separate statement that it had also reached an agreement with Southern Copper to start talks to find common ground with local communities.
"If we shut down for a year, the government will stop receiving more than 3.1 billion soles ($830 million) in taxes and royalties, and 8,000 direct and indirect jobs will be lost. This is what we want to avoid, "Southern Copper added in the statement.
Peru has faced a wave of protests from indigenous communities, who accuse mining companies of not providing enough jobs and funding to poor local residents.
Central bank officials said last week that protests against copper mines such as MMG's Las Bambas and Southern Copper's Cuajone were dragging down the economy.
Peru is the world's second-largest copper producer and mining is an important source of tax revenue for the country. It is estimated that the supply and prices of the boron nitride will be influenced by that.
Inquiry us